Publications

Books

"Toukeigaku (Statistics)" (in Japanese), The Japan Statistitical Society ed., Tokyo-tosyo co., (The author of Chapter 3, "Statistical Estimation")

Recent Technical Reports

2021/02/16
Takehara, D. and Kobayashi, K.: Enhancing Hierarchical Information by Using Metric Cones for Graph Embedding, arXiv:2102.08014
2020/12/22
Tong, Q. and Kobayashi, K.: Entropy-regularized optimal transport on multivariate normal and q-normal distributions, arXiv:2012.10623
2020/02/29
Kamoi, R. and Kobayashi, K.: Why is the Mahalanobis Distance Effective for Anomaly Detection?, arXiv2003.00402
2019/11/15
Kamoi, R. and Kobayashi, K.: Likelihood Assignment for Out-of-Distribution Inputs in Deep Generative Models is Sensitive to Prior Distribution Choice, arXiv1911.06515
2018/02/12
Aoshima, T., Kobayashi, K. and Minami, M.: Revisiting the Vector Space Model: Sparse Weighted Nearest-Neighbor Method for Extreme Multi-Label Classification, arXiv1802.03938
2016/07/22
Shinzato, T., Kobayashi, K., Kaku, I. (2016) Universality of Makespan in Flowshop Scheduling Problem, arXiv1607.07303
2014/03/12
Kei Kobayashi, Mitsuru Orita (2014), Permutation test for dendrograms and its application to the analysis of mental lexicons, arXiv1403.2845
2014/01/13
Kei Kobayashi, Henry P. Wynn (2014), Empirical geodesic graphs and CAT(k) metrics for data analysis, arXiv1401.3020
2013/10/24
Kei Kobayashi, Henry P. Wynn (2013), Computational algebraic methods in efficient estimation, arXiv1310.6515 (to appear in Geometric Theory of Information)

Journal Papers, Proceedings with Peer Review

Tong, Q. and Kobayashi, K. (2021), Entropy-regularized optimal transport on multivariate normal and q-normal distributions, Entropy, 23(3), 302.

Kobayashi, K. and Wynn, H. (2020), Empirical geodesic graphs and CAT(k) metrics for data analysis, Statistics and Computing, 30(1), 1-18, DOI: 10.1007/s11222-019-09855-3

Hara, K., Suzuki, I., Kobayashi, K., Fukumizu, K. and Radovanovi, M.(2016), Flattening the Density Gradient for Eliminating Spatial Centrality to Reduce Hubness, Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pp.1659-1665.

Hara, K., Suzuki, I., Kobayashi, K. and Fukumizu, K. (2015), Reducing Hubness: A Cause of Vulnerability in Recommender Systems, In proceedings of the 38th Annual ACM SIGIR Conference, pp. 815-818.

Hara, K., Suzuki, I., Shimbo, M., Kobayashi, K., Fukumizu, K. and Radovanovi, M. (2015) Localized Centering: Reducing Hubness in Large-Sample Data, Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), pp.2645-2651.

Kobayashi, K., Orita, M. and Wynn, H. (2015) Statistical analysis via the curvature of data space, BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014), AIP Conf. Proc. 1641, 97 (2015), pp.97-104.

Kobayashi, K. and Wynn, H. (2014) Computational algebraic methods in efficient estimation, Geometric Theory of Information (Signals and Communication Technology), 119-140.

Orita, M., Kobayashi, K., Murasato, Y., Lavin, R., Yoshii, M. and Aizawa, K. (2014), The Relationship Between English Proficiency and Semantic Clustering in the Mental Lexicon (in Japanese), KASELE Bulletin, 42, pp.1-10.

Orita, M., Kobayashi, K., Murasato, Y., Lavin, R., Yoshii, M., Aizawa, K., and Kamimoto, T. (2014), Mental Lexicons of Native English Speakers and Japanese Learners of English: Degrees of Similarity Between Lexical Items (in Japanese), Kumamoto University Studies in Social and Cultural Sciences, 12, pp. 11-24.

Kobayashi, K. and Wynn, H. (2013) Asymptotically Efficient Estimators for Algebraic Statistical Manifolds, Geometric Science of Information: Lecture Notes in Computer Science, 8085, pp. 721-728.

Orita, M., Kobayashi, K., Murasato, Y., Kamimoto, T., Yoshii, M. and Lavin, R. (2013), The Relationship Between Vocabulary Size and Semantic Clustering in the Mental Lexicon (in Japanese), KASELE Bulletin, 41, pp.1-10.

Orita, M. and Kobayashi, K. (2013), The Organisation of Semantically Equivalent Adjectives Between L1 and L2 Mental Lexicons in Japanese EFL Learners,,Kumamoto University Studies in Social and Cultural Sciences, 11, pp. 21-34. (in Japanese)

Orita, M. and Kobayashi, K. (2012), Mental Lexicons of Native and Non-Native English Speakers: Semantic Clustering of Lexical Items from Mixed Word Classes,Kumamoto University Studies in Social and Cultural Sciences, 10, pp. 17-32. (in Japanese)

Orita, M. and Kobayashi, K. (2012), The Organisation of Sematically Equivalent Lexical Items between L1 and L2 Mental Lexicons as Seen in Japanese EFL Learners, KASELE Bulletin, 40, pp. 1-10. (in Japanese)

Orita, M. and Kobayashi, K. (2011), Effects of Intra-Lexical Features on the Completion Time of Sorting Tasks, International Journal of Social and Cultural Studies, 4, 1-23.

Orita, M. and Kobayashi, K. (2011), Predictors of L1 and L2 Differences in the Semantic Clustering of Mental Lexicons,Kumamoto University Studies in Social and Cultural Sciences, 9, pp. 19-37. (in Japanese)

Orita, M. and Kobayashi, K. (2011), Semantic Clustering of High Frequeny English Adjectives in L1 and L2 Mental Lexicons, KASELE Bulletin, 39. pp.1-10. (in Japanese)

Kobayashi, K. (2011), Upper Bounds on Total Variation Distances by DeRobertis Separation, Proceedings of the Institute of Statitical Mathematics, Vol.59, No.2, pp.321-329. (in Japanese)

Kobayashi, K. and Komaki, F. (2008), Bayesian shrinkage prediction for the regression problem, Journal of Multivariate Analysis, 99 (9), pp. 1888-1905.

Kobayashi, K., Kawasaki, H., and Takemura, A. (2006), Parallel matching for ranking all teams in a tournament, Advances in Applied Probability, 38 (8), pp. 804-826.

Kobayashi, K. and Komaki, F. (2006), Information criteria for support vector machines, IEEE transactions on Neural Networks, 17 (3), pp. 571-577.

Kobayashi, K. and Komaki, F. (2005),“Shrinkage prediction for the Normal regression problem with Kullback-Leibler loss function”, the Second International Symposium on Information Geometry and its Applications, Univ. of Tokyo, pp. 237-244.

Kobayashi, K. and Sugihara K. (2002), “Crystal Voronoi diagram and its applications”, Future Generation Computer System, Vol. 18, pp. 681-692.

Kobayashi, K., Sugihara K. (2001), “Crystal Voronoi Diagram and Its Applications to Collision-Free Paths”, Computational Science?ICCS 2001, Springer Berlin Heidelberg, pp. 738-747.

Kobayashi, K. and Sugihara K. (2000), Approximation of Multiplicatively Weighted Crystal Growth Voronoi Diagram and Its Application, The Transactions of the Institute of Electrons, Information and Communication Engineers A, pp. 1495-1504. (in Japanese)

Techincal Reports, Others

Kei Kobayashi and Fumiyasu Komaki: “Risk-sensitive mixed discrete-Gaussian networks”, Tech. Rep. METR 2004-36, The University of Tokyo, 2004.